Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph
نویسندگان
چکیده
With a clear circular aperture, the vortex coronagraph perfectly cancels an on-axis point source and offers a 0.9 or 1.75 λ/D inner working angle for topological charge 2 or 4, respectively. Current and near-future large telescopes are on-axis, however, and the diffraction effects of the central obscuration, and the secondary supports are strong enough to prevent the detection of companions 10−3-10−5 as bright as, or fainter than, their host star. Recent advances show that a ring apodizer can restore the performance of this coronagraph by compensating for the diffraction effects of a circular central obscuration in a 1D modeling of the pupil. Our aim is to extend this work and design optimal apodizers for arbitrary apertures in 2D in order to tackle the diffraction effects of the spiders and other noncircular artefacts in the pupil. We fold this analytical result into a numerical optimization scheme that yields hybrid coronagraph designs that combine the advantages of the vortex coronagraph (small in IWA) and of shaped pupils coronagraphs (robustness to central obscuration and pupil asymmetric structures). The transmission of the apodizer is maximized, while constraints are set on the extremum values of the electric field that is computed in chosen regions of the Lyot plane through closed form expressions derived for even topological charges. Optimal apodizers are computed for topological charges 2 and 4 vortex coronagraphs and for telescope apertures with 10-30% central obscurations and 0%, 0.5%, and 1% thick spiders. We put the results of our numerical optimizations in perspective with the analytical solutions and show that our apodizations converge to the ring apodizations. We then characterize the impacts of the obscuration ratio and the thickness of the spiders on the throughput and the IWA. For the apodized charge-2 vortex coronagraph the throughputs are slightly below those of the ring apodized vortex coronagraph, and the inner working angle is mostly unaffected by the apodization. The throughputs of the apodizers for the charge-4 vortex coronagraph are higher than those of the ring apodized vortex coronagraph. This effect increases with the obscuration ratio, though the inner working angle does, too, and it ranges between 2 and 3λ/D . The results presented in this paper show that high contrast at small inner working angles can be obtained with a vortex coronagraph for on-axis telescopes, in spite of the presence of a secondary mirror and its secondary support structures.
منابع مشابه
Apodized phase mask coronagraphs for arbitrary apertures
Context. With a clear circular aperture, the vortex coronagraph perfectly cancels an on-axis point source and offers a 0.9 or 1.75λ/D inner working angle for topological charge 2 or 4, respectively. Current and near-future large telescopes are on-axis, however, and the diffraction effects of the central obscuration, and the secondary supports are strong enough to prevent the detection of compan...
متن کاملApodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures
In the context of high dynamic range imaging, this study presents a breakthrough for the understanding of Apodized Pupil Lyot Coronagraphs, making them available for arbitrary aperture shapes. These new solutions find immediate application in current, ground-based coronagraphic studies (Gemini, VLT) and in existing instruments (AEOS Lyot Project). They also offer the possib-lity of a search for...
متن کاملSpiders in Lyot Coronagraphs
In principle, suppression of on-axis stellar light by a coronagraph is easier on an unobscured aperture telescope than on one with an obscured aperture. Recent designs such as the apodized pupil Lyot coronagraph, the ‘band-limited’ Lyot coronagraph, and several variants of phase mask coronagraphs work best on unobscured circular aperture telescopes. These designs are developed to enable the dis...
متن کاملA Coronagraph with a Band-Limited Mask for Finding Terrestrial Planets
Several recent designs for planet-finding telescopes use coronagraphs operating at visible wavelengths to suppress starlight along the telescope’s optical axis while transmitting any off-axis light from circumstellar material. We describe a class of graded coronagraphic image masks that can, in principle, provide perfect elimination of on-axis light, while simultaneously maximizing the Lyot sto...
متن کاملComparison of coronagraphs for high contrast imaging in the context of Extremely Large Telescopes
Aims. We compare coronagraph concepts and investigate their behavior and suitability for planet finder projects with Extremely Large Telescopes (ELTs, 30-42 meters class telescopes). Methods. For this task, we analyze the impact of major error sources that occur in a coronagraphic telescope (central obscuration, secondary support, low-order segment aberrations, segment reflectivity variations, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014